References

[1]
Y. Marzouk, T. Moselhy, M. Parno and A. Spantini. Sampling via Measure Transport: An Introduction. In: Handbook of Uncertainty Quantification, edited by R. Ghanem, D. Higdon and H. Owhadi (Springer International Publishing, Cham, 2016); pp. 1–41. Accessed on Nov 4, 2024.
[2]
M. Ramgraber, D. Sharp, M. L. Provost and Y. Marzouk. A Friendly Introduction to Triangular Transport (Mar 2025), arXiv:2503.21673 [stat]. Accessed on Apr 7, 2025.
[3]
R. Baptista, Y. Marzouk and O. Zahm. On the Representation and Learning of Monotone Triangular Transport Maps. Foundations of Computational Mathematics (2023).
[4]
J. Grashorn, M. Broggi, L. Chamoin and M. Beer. Efficiency Comparison of MCMC and Transport Map Bayesian Posterior Estimation for Structural Health Monitoring. Mechanical Systems and Signal Processing 216, 111440 (2024).
[5]
M. Rosenblatt. Remarks on a multivariate transformation. The annals of mathematical statistics 23, 470–472 (1952).
[6]
H. Knothe. Contributions to the theory of convex bodies. The Michigan Mathematical Journal 4, 39–52 (1957).
[7]
M. Parno, P.-B. Rubio, D. Sharp, M. Brennan, R. Baptista, H. Bonart and Y. Marzouk. MParT: Monotone Parameterization Toolkit. Journal of Open Source Software 7, 4843 (2022).
[8]
B. Zanger, O. Zahm, T. Cui and M. Schreiber. Sequential Transport Maps Using SoS Density Estimation and $``\alpha\$``-Divergences (Oct 2024), arXiv:2402.17943 [stat]. Accessed on Apr 8, 2025.
[9]
A. B. Sullivan, D. M. Snyder and S. A. Rounds. Controls on biochemical oxygen demand in the upper Klamath River, Oregon. Chemical Geology 269, 12–21 (2010).